skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brilenkov, Maksym"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the effect of the cubic torus topology of the Universe on scalar cosmological perturbations which define the gravitational potential. We obtain three alternative forms of the solution for both the gravitational potential produced by point-like masses, and the corresponding force. The first solution includes the expansion of delta-functions into Fourier series, exploiting periodic boundary conditions. The second one is composed of summed solutions of the Helmholtz equation for the original mass and its images. Each of these summed solutions is the Yukawa potential. In the third formula, we express the Yukawa potentials via Ewald sums. We show that for the present Universe, both the bare summation of Yukawa potentials and the Yukawa-Ewald sums require smaller numbers of terms to yield the numerical values of the potential and the force up to desired accuracy. Nevertheless, the Yukawa formula is yet preferable owing to its much simpler structure. 
    more » « less
  2. null (Ed.)
    We investigate the influence of the chimney topology T×T×R of the Universe on the gravitational potential and force that are generated by point-like massive bodies. We obtain three distinct expressions for the solutions. One follows from Fourier expansion of delta functions into series using periodicity in two toroidal dimensions. The second one is the summation of solutions of the Helmholtz equation, for a source mass and its infinitely many images, which are in the form of Yukawa potentials. The third alternative solution for the potential is formulated via the Ewald sums method applied to Yukawa-type potentials. We show that, for the present Universe, the formulas involving plain summation of Yukawa potentials are preferable for computational purposes, as they require a smaller number of terms in the series to reach adequate precision. 
    more » « less
  3. null (Ed.)
    Searching for possible indicators of spatial topology of the Universe in the Cosmic Microwave Background data, one recognizes a quite promising interpretation which suggests that the shape of the space manifests itself in the form of anomalies in the large angular scale observations, such as the quadrupole and octopole alignment. Motivated by the presumptive existence of such a tempting connection, we study the chimney topology, T×T×R, which belongs to the class of toroidal topologies with a preferred direction. The infinite axis in this case may be attributed to the preferred axis of the aforementioned quadrupole and octopole alignment. We investigate the gravitational aspects of such a configuration. Namely, we reveal the form of the gravitational potential sourced by point-like massive bodies. Starting from the perturbed Einstein equations, which ensure the proper demonstration of relativistic effects, one can derive the Helmholtz equation for the scalar perturbation (gravitational potential). Through distinct alternative methods, we present the physically meaningful nontrivial exact solutions of this equation. Our approach excludes any presumptions regarding the spatial distribution of gravitating sources. We show that the particular solution that appears in the form of summed Yukawa potentials is indeed very convenient for the use in numerical calculations, in the sense that it provides the desired accuracy with fewer terms in the series. 
    more » « less